OCR Maths M2

Topic Questions from Papers

Collisions

Answers

1	(i)	$5 \mathrm{~m}=\mathrm{mu}+4 \mathrm{~m}$	M1		cons. of mom.	
		$\mathrm{u}=1$	A1			
		$\mathrm{e}=(2-1) / 5$	M1			
		$\mathrm{e}=$ 䜾	A1	4		
	(ii)	$\mathrm{I}=4 \mathrm{~m}$	B1			
		\rightarrow	B1	2	to the right	
	(iii)	$4 \mathrm{~m}=5 \mathrm{mv}$	M1			
		$\mathrm{v}=\mathrm{F}^{\text {e }}$	A1			
		O<1	B1	3		9

(Q4, June 2005)

2	(i)	$6 \mathrm{~m}=3 \mathrm{mx}+2 \mathrm{my}$	M1		- 3mx ok if clear on diagram	
		$6=3 x+2 y$	A1		m must have been cancelled	
		$\mathrm{e}=1=(\mathrm{y}-\mathrm{x}) / 2$	M1		or $1 / 2.3 \mathrm{~m} .2^{2}=1 / 2.3 \mathrm{mx}^{2}+1 / 2.2 \mathrm{my}^{2}$	
			A1		$6=3 \mathrm{x}^{2} / 2+\mathrm{y}^{2}$ aef	
		$\mathrm{x}=0.4$ or $2 / 5$	A1		sc A1A0 if $\mathrm{x}=2, \mathrm{y}=0$ not rejected	
		$\mathrm{y}=2.4$ or $\quad 12 / 5$	A1	6		
	(ii)	$4.8 \mathrm{~m} \quad$ or $24 \mathrm{~m} / 5$	B1V		$\int 2 \mathrm{mx}$ their y or $3 \mathrm{~m}(2$-their x)	
		same as original dir. of A	B1	2	use their diagram(or dir. of B)	
	(iii)	$\mathrm{e}=(2.8-1.0) / 2.4$	M1			
		0.75 watch out for \pm fiddles	A1 \downarrow	2	$\int(1.8 /$ their y) with 0 Be $\theta 1$	10

(Q5, Jan 2006)

3	$\begin{aligned} & \mathrm{v}^{2}=2 \mathrm{gh} \\ & \mathrm{u}=\sqrt{ } 4 \mathrm{~g} \text { or } \sqrt{ } 39.2 \text { or } 6.26 \\ & \mathrm{v}=\sqrt{ } 2.8 \mathrm{~g} \text { or } \sqrt{ } 27.44(5.24) \\ & \mathrm{l}=\mathrm{P} 0.3(6.26+5.24) \\ & 3.45 \mathrm{Ns} \end{aligned}$	M1 A1 A1 M1 A1/	5	kinematics or energy speed of impact (\pm) speed of rebound (\pm) must be sum of mags. of vels. \checkmark must be positive	5

(Q2, June 2006)

$\mathbf{5}$		$\mathrm{e}=1=(y-x) / 4$	B 1		or $1 / 2 \times 0.2 x^{2}+1 / 2 \times 0.1 y^{2}=$	
		$0.8=0.2 x+0.1 y$	B 1		$1 / 2 \times 0.2 \times 4^{2}(\mathrm{~B} 1 / \mathrm{B} 1$ for any 2$)$	
		solving sim. equ.	M 1		not if poor quad. soln.	
		$x=4 / 3$ only	A 1	4		4

(Q2, Jan 2007)

6	(i)	$x^{2}=21^{2}+2 \times 40 \times 9.8$	M1			
		$x=35$	A 1			
		$0=y^{2}-2 \times 40 \times 9.8$	M 1			
		$y=28$	A 1		may be implied	
		$\mathrm{e}=28 / 35$	M 1			
		$\mathrm{e}=0.8$	A 1	6	aef	
	(ii)	$0.2 \times 28--0.2 \times 35$	M 1		must be double negative	
		$\mathrm{I}=12.6$	A 1	2		$\mathbf{8}$

(Q3, Jan 2007)

(Q7, June 2007)

8 (i)	$\begin{aligned} & 12 \times \cos 55^{\circ} \\ & 6.88 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$		$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } 2 \end{aligned}$			
(ii)	$\begin{aligned} & 12 \times \cos 55^{\circ} \times 0.65 \\ & (\pm) 4.47 \mathrm{~m} \mathrm{~s}^{-1} \\ & \hline \end{aligned}$	\checkmark	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \\ & \hline \end{aligned}$	2	${ }^{\prime} 0.65 \mathrm{x}$ their (i)	4

(Q1, Jan 2008)

9 (i)	$2 \mathrm{mu}-3 \mathrm{kmu}=-\mathrm{mu}+\mathrm{kmv}$ $\mathrm{v}=\ldots \ldots$ $\mathrm{v}=3 \mathrm{u}(1-\mathrm{k}) / \mathrm{k}$	M1	
	$(0<) \mathrm{k}<1$	M1	attempting to make v the subject
A1	$3 \mathrm{u} / \mathrm{k}-3 \mathrm{u}$		
	A1 4	$\mathrm{not} \leq 1$	

10(i)	$u=3 \mathrm{~m} \mathrm{~s}^{-1}$ $6=2 x+3 y$ $e=(y-x) / 3$ $y=2$

(Q7, June 2008)

11 (i)	$\mathrm{p}=4 \mathrm{~m} \mathrm{~s}^{-1}$	B1	P's first speed
	$0.8=0.2 \mathrm{p}_{1}+0.3 \mathrm{q}_{1}$	M1	
		A1	
	$0.5=\left(\mathrm{q}_{1}-\mathrm{p}_{1}\right) / 4$	M1	
		A1	
	solving above	M1	
	$\mathrm{q}_{1}=2.4 \quad 12 / 5$	A1	Q's first speed
	$\mathrm{p}_{1}=0.4 \quad 2 / 5$	A1 8	may be in (ii). SR 1 for both negative
(ii)	$0.8=0.2 \mathrm{p}_{2}+0.3 \mathrm{q}_{2}$	M1	
		A1	
	$0.5=\left(\mathrm{p}_{2}-\mathrm{q}_{2}\right) / 2$	M1	
		A1	
	solving above	M1	
	$\mathrm{p}_{2}=2.2 \quad 11 / 5$	A1	
	$\mathrm{q}_{2}=1.2 \quad 6 / 5$	A1 7	
(iii)	$\mathrm{R}=0.3 \times 1.2^{2} / 0.4$	M1	
	$\mathrm{R}=1.08 \mathrm{~N}$	A1 2	17

(Q7, Jan 2009)

12(i)	$\begin{aligned} & I=0.9=6 \times 0.2-v \times 0.2 \\ & v=1.5 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } 3 \\ & \hline \end{aligned}$	needs to be mass 0.2
(ii)	$\begin{aligned} & 0.6=(c-b) / 6 \\ & 6 \times 0.2=0.2 b+0.1 c \end{aligned}$ $\begin{aligned} & b=2.8 \\ & 0.4 \times 5+0.2 \times 1.5=0.4 a+0.2 \times 6 \\ & I=0.9=-0.4 a--0.4 \times 5 \\ & a=2.75 \\ & 2.75<2.8 \end{aligned}$ no further collision	M1 A1 M1 A1 A1 M1 A1 A1 M1 A1 10	restitution (allow 1.5 for M1) momentum (allow 1.5 for M1) 1st collision (needs their 1.5 for M1) compare v 's of A and B (calculated)

13 (i)	$\begin{aligned} & \mathrm{v}^{2}=2 \times 9.8 \times 3 \text { or } 2 \times 9.8 \times 1.8 \\ & \mathrm{v}_{1}=\sqrt{6 g} \text { or } \sqrt{58.8} \text { or } \frac{7}{5} \sqrt{30} \text { or } 7.67 \\ & \mathrm{v}_{2}=\sqrt{3.6 g} \text { or } \sqrt{35.28} \text { or } \frac{21}{5} \sqrt{2} \text { or } 5.94 \\ & \mathrm{I}= \pm 0.2(5.94+7.67) \\ & 2.72 \end{aligned}$	M1 A1 A1 M1 A1ft [5]	Kinematics or energy Speed of impact (\pm) Speed of rebound (\pm) $+\mathrm{ve}, \mathrm{ft}$ on $\mathrm{V}_{1 \text { and }} \mathrm{V}_{2}$
(ii)	$\begin{aligned} & \mathrm{e}=5.94 / 7.67 \\ & 0.775 \text { or } \frac{\sqrt{15}}{5} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1ft [2] } \end{aligned}$	Allow 0.774, ft on v_{1} and V_{2}

(Q2, Jan 2010)

14	$\begin{aligned} & 16-12=2 x+3 y \\ & 4=2 x+3 y \\ & 1 / 2.2(8)^{2}+1 / 2.3(4)^{2} \text { or } 1 / 2.2 x^{2}+1 / 2.3 y^{2} \text { or } \\ & \pm 1 / 2.2\left(8^{2}-x^{2}\right) \text { or } \pm 1 / 2\left(4^{2}-y^{2}\right) \\ & 1 / 2.2(8)^{2}+1 / 2.3(4)^{2}-1 / 2.2 x^{2}-1 / 2 . . .3 y^{2}=81 \\ & 2 x^{2}+3 y^{2}=14 \end{aligned}$ Attempt to eliminate x or y from a linear and a quadratic equation $15 y^{2}-24 y-12=0 \text { or } 10 x^{2}-16 x-26=0$ Attempt to solve a three term quadratic $\begin{aligned} & x=-1(\text { or } x=2.6) \\ & y=2(\text { or } y=-2 / 5) \end{aligned}$ $x=-1 \text { and } y=2 \text { only }$ speeds 1,2 away from each other	M1 A1 B1 M1 A1 M1 A1 M1 A1 A1 A1 A1 [12]	aef aef aef	12

(Q5, Jan 2010)

15 (i)	$\begin{aligned} & 2 m u=2 m v+3 m v \\ & v=2 / 5 u \end{aligned}$	M1 A1 A1 3	Conservation of momentum Must be $v=$
(ii)	$\begin{aligned} & \mathrm{e}=(3 v-v) / u \\ & \mathrm{e}=4 / 5 \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & 2 \end{array}$	Using restitution AG
(iii)	$\begin{aligned} & \text { Initial K.E. }=9 m v^{2} / 2=18 m u^{2} / 25 \\ & \text { Final K.E. }=9 m v^{2} / 8=9 m u^{2} / 50 \\ & 1 / 2 m(V)^{2}=\text { Final K.E. } \\ & V=3 u / 5 \end{aligned}$	$\begin{array}{\|l} \text { B1 FT } \\ \text { B1 FT } \\ \text { M1 } \\ \text { A1 } 4 \end{array}$	FT on their v from (i) FT on their v from (i) AG
(iv)	$\begin{aligned} & 4 m u / 5-3 m u / 5=2 m x+m y \\ & u / 5=2 x+y \\ & \mathrm{e}=4 / 5=(y-x) / u \\ & 4 u=5 y-5 x \end{aligned}$ solving 2 relevant equations $\begin{aligned} & x=-u / 5 y=3 u / 5 \\ & y=3 u / 5 \end{aligned}$ away from wall $(x)+$ towards wall (y)	M1 A1 FT M1 FT A1 M1 A1 A1 A1 8	Conservation of momentum FT on their v from (i); aef Using restitution FT on their v from (i); aef both 17

\begin{tabular}{|c|c|c|c|c|c|}
\hline 16 \& (i)

OR
OR

OR \& \begin{tabular}{l}
Last 5 marks

Last 5 marks

Last 5 marks

 \&

$$
\begin{aligned}
& b+a=1.8 e \\
& 0.7 b-0.2 a=0.2 \times 1.8 \\
& b=0.4(1+e) \\
& a=1.4 e-0.4 \\
& 1.4 e-0.4>0.4+0.4 e \\
& e>0.8
\end{aligned}
$$

Using $a>b$

$$
\begin{aligned}
& a>0.72 \\
& b>0.72 \\
& 1.8 e>0.72+0.72 \\
& e>0.8
\end{aligned}
$$

Using $a=b$ to find a or b

$a($ or $b)=0.9 e$ and $a(o r b)=0.72$

$$
e=0.8
$$

Convincing argument for correct inequality

$$
e>0.8
$$

$$
\mathrm{a}=1.4 \mathrm{e}-0.4 \text { or } \mathrm{b}=0.4(1+\mathrm{e})
$$

Using a > b

$$
a>0.9 e \text { or } b<0.9 e
$$

$$
e>0.8
$$

 \&

M1

A1

M1

A1

M1

A1

A1

M1

A1

[9]

M1

A1

A1

M1

A1

M1

A1

A1

M1

A1

M1

A1

M1

A1

A1

 \&

Uses restitution

$$
b-a=1.8 e
$$

Uses momentum

$0.7 \mathrm{~b}+0.2 \mathrm{a}=0.2 \times 1.8$, signs consistent with first eqn

Solves 2 simultaneous equations (eliminate a or b)

$$
\mathrm{a}=0.4-1.4 \mathrm{e}
$$

Using a>b, correct signs in a essential

correct signs in a essential

Solves 2 simultaneous equations (eliminate a or b) aef or multiples thereof correct signs in a essential aef or multiples thereof
\end{tabular}

\hline \& | (ii) |
| :--- |
| OR | \& \& | $\begin{aligned} & \mathrm{c}-(\pm 0.25)=1 \times 0.75 \\ & \mathrm{c}=0.5,1 \\ & 0.75 \times 0.7=0.25 \times 0.7+\mathrm{m}(\mathrm{x} 1) \\ & O R \\ & 0.75 \times 0.7=-0.25 \times 0.7+0.5 \mathrm{~m} \\ & \mathrm{~m}=0.35 \text { (from first equation) } \\ & \mathrm{m}=1.4 \text { (from second equation) } \\ & \\ & 1 / 2 \times 0.7 \times 0.75^{2}=1 / 2 \times 0.7 \times 0.25^{2}+1 / 2 \mathrm{mc}^{2} \\ & 0.7 \times 0.75=0.7 \times(+/-0.25)+\mathrm{mc} \end{aligned}$ |
| :--- |
| Solving simultaneous equations $\begin{aligned} & \mathrm{m}=0.35 \\ & \mathrm{~m}=1.4 \end{aligned}$ | \& | M1 |
| :--- |
| A1 |
| A1 |
| [6] |
| B1 |
| M1 |
| A1 |
| M1 |
| A1 |
| A1 | \& | Uses restitution with $\mathrm{e}=1$, either Or 0.75 ± 0.25 |
| :--- |
| Uses momentum conservation with correct combination of sign and c value $O R \operatorname{mx}(0.75 \pm 0.25) \pm 0.7 \times 0.25=0.75 \times 0.7$ |
| $1 / 2$ may not be seen |
| At least one momentum equation $\mathrm{mc}=0.35$ and 0.7 |

\hline
\end{tabular}

17 ia b	$\begin{aligned} & \text { If reversed } 2.9+2=e(3+1.5) \\ & e>1 \text { impossible } \\ & 2.9-2=e(3+1.5) \\ & e=0.2 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$	Award B1 if no explicit numerical justification May be seen in ia
ii	$\begin{aligned} & 3 m-0.2 \times 1.5=2 m+0.2 \times 2.9 \\ & m=0.88 \end{aligned}$	M1 A1 A1 [3]	Conservation of momentum Accept with g included consistently Do not award if g used
iii	$\begin{aligned} & 0.68=0.2 v+0.2 \times 2.9 \\ & v=0.5 \\ & e=0.5 / 2.9 \\ & e=0.172 \end{aligned}$	M1 A1 M1 A1 [4]	Impulse = change in momentum Separation speed not 2.9 Allow 5/29

(Q4, June 2011)

18	(i)		$\begin{aligned} & v^{2}=2 \times 9.8 \times 3.136 \\ & v=7.84 \\ & \text { Rebound speed }=7.84 e \\ & I= \pm 0.5(7.84+7.84 e)= \pm 3.92(1+e) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 FT } \\ \text { B1 FT } \\ {[4]} \end{gathered}$	Uses $v^{2}=u^{2}+2 a s$ or energy with $u=0$. Signs must be consistent. Ignore -ve. AEF seen. FT on $\operatorname{cv}(v)$.
	(ii)		$\begin{align*} & -7.84 e=7.84 e-g t \\ & t=1.6 e \end{align*}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Uses a complete method to find t.
	(iii)	(a) (b)	$\begin{aligned} & t_{2}=1.6 \mathrm{e}^{2} \\ & \mathrm{t}_{3}=1.6 \mathrm{e}^{3} \end{aligned}$	B1 B1 [2]	
	(iv)		Time to first bounce is 0.8 s Identify total time is sum of a GP in e $\begin{gathered} \frac{1.6 e}{1-e}=4.2 \\ e=0.724 \end{gathered}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[5]} \\ & \hline \end{aligned}$	Indication of the sum of at least to term in e^{4} Equate 3.4 or 4.2 or 5 or 5.8 with attempt at use of formula for sum to infinity of a GP. Allow 21/29

19	(i)		Speed $=1.2 \mathrm{~ms}^{-1}$	B1	May be seen anywhere, even in (ii); allow -1.2
		Impulse $=0.8 \times \pm(4--1.2)$	M1	Difference between momenta, allow $0.8 \times \pm(4-1.2)$	
		$\pm 4.16 \mathrm{Ns}$	A1		
			$[3]$		
	(ii)	KE lost $=1 / 2 \times 0.8 \times\left(4^{2}-(\pm 1.2)^{2}\right)$	M1		
		$5.82(4) \mathrm{J}$	Allow $-5.82(4)$		

(Q1, June 2012)

20	(i)		$\begin{aligned} & 0.2 \times 1.8=0.2 v_{\mathrm{A}}+0.4 v_{\mathrm{B}} \\ & v_{\mathrm{B}}-v_{\mathrm{A}}=1 / 3 \times 1.8 \end{aligned}$ Solve for v_{A} or v_{B} $v_{B}=0.8 \mathrm{~m} \mathrm{~s}^{-1} \text { and } v_{A}=0.2 \mathrm{~m} \mathrm{~s}^{-1} \quad \mathbf{A G}$	$\begin{gathered} \text { *M1 } \\ \text { A1 } \\ \text { *M1 } \\ \text { A1 } \\ \text { Dep*M1 } \\ \text { A1 } \\ {[6]} \\ \hline \end{gathered}$	Attempt at conservation of momentum Attempt at restitution aef
	(ii)		$\begin{aligned} & 0.4 \times 0.8+0.6 \times 0.2=0.4 v_{B^{\prime}}+0.6 v_{C} \\ & v_{C}-v_{B^{\prime}}=e(0.8-0.2) \end{aligned}$ Use two relevant equations to eliminate v_{C} State $v_{B^{\prime}} \geq 0.2$ Set up (in)equality in e and their v_{A} $0.44-0.36 e \geq 0.2 \text { or } 0.44-0.36 e=0.2$ $e \leq 2 / 3 \text { or } 0.667$	B1 B1 *M1 B1 dep*M1 A1 A1 $[7]$	aef soi, Allow $\nu_{B^{\prime}}>0.2$ Condone incorrect inequality sign for M1 only Allow $0.44-0.36 e>0.2$
		OR	$\begin{aligned} & 0.4 \times 0.8+0.6 \times 0.2=0.4 v_{B^{\prime}}+0.6 v_{C} \\ & v_{C}-v_{B^{\prime}}=e(0.8-0.2) \\ & \text { State } v_{B^{\prime}} \geq 0.2 \end{aligned}$ Sub v_{B}, in momentum equation \& solve for v_{C} $\left(v_{C}=\right) 0.6$ Set up (in)equality in e and their v_{A} $e \leq 2 / 3 \text { or } 0.667$	B1 B1 B1 *M1 A1 dep*M1 A1 $[7]$	aef soi, Allow $v_{B^{\prime}}>0.2$ eg $0.6-e(0.8-0.2) \geq 0.2$, Condone incorrect inequality sign for M1 only

(Q6, June 2012)

21	(i)	$\begin{aligned} & \mathrm{a}=\mathrm{g} \sin 30 \\ & 1+u=0.4(2+2 \mathrm{~g} \sin 30) \\ & u=3.72 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [4] } \end{aligned}$	$\begin{aligned} & \text { Using NEL with } \mathrm{u}_{\mathrm{A}} \text { from } \operatorname{cv}(\mathrm{a}), \mathrm{u}_{\mathrm{A}} \\ & \neq 0 \\ & \text { cwo } \end{aligned}$	
	(ii)	$\begin{aligned} & \text { Use } v^{2}=u^{2}-2(g \sin 30) s \\ & s=1.41 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Using $\mathrm{v}=0, \mathrm{cv}(\mathrm{a})$ from (i) or correct a SC If a not found in (i), allow $\mathrm{a}=\mathrm{g}$ for M1A0.	
	(iii)	Use of conservation of momentum $0.5 \times 2 \mathrm{gsin} 30-2 m=m-0.5 \times 3.72$ $m=2.25$	$\begin{gathered} \hline \text { M1 } \\ \text { A1ft } \\ \text { A1 } \\ {[3]} \end{gathered}$	Using cv(a) $\mathrm{ft} \mathrm{cv}(\mathrm{u})$ from (i) Aef(raction) eg $2{ }^{19} / 75$ or ${ }^{169} / 75$	

(Q3, Jan 2013)

22	(i)	$\begin{aligned} & 4-4\left(1-e+e^{2}\right)=-e(u-4) \\ & u=4 e \\ & m u+0.2 \times 4=0.2 \times 4\left(1-e+e^{2}\right)+4 m \\ & m=0.2 e \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[6]} \end{aligned}$	Use of restitution, may have sign errors, must be correct ratio (v / u) oe Use of conservation of momentum oe
	(ii)	Valid method to find e that gives the least speed Get $e=1 / 2$ $\begin{aligned} & 1 / 2 \times 0.2 \times 4^{2}+1 / 2 \times 0.1 \times 2^{2}-\left(1 / 2 \times 0.2 \times 3^{2}+1 / 2 \times 0.1 \times 4^{2}\right) \\ & (+/-) 0.1 \mathrm{~J} \end{aligned}$	M1 A1 M1 A1 A1 [5]	Differentiate v_{A} and equate to 0 or complete the square on v_{A} www Difference of KE with 4 terms Must have found the value of e from a legitimate method. www SCM1A1 Loss of KE $=8 e(1-e)^{3} / 5$ or $8 e\left(1-3 e+3 e^{2}-e^{3}\right) / 5$ or $8 e / 5-24 e^{2} / 5+24 e^{3} / 5-8 e^{4} / 5$
	(iii)	$0.2 e(4-4 e)=0.192 \text { or } 0.2\left(4-\left(4-4 e+4 e^{2}\right)\right)=0.192$ Solve three term QE in e $e=0.4 \text { or } 0.6$	$\begin{gathered} \text { *M1 } \\ \text { A1 } \\ \text { dep*M1 } \\ \text { A1 } \\ {[4]} \end{gathered}$	Attempt to use impulse = change in momentum on one particle method should lead to 2 real values for e For both

